随着深度学习和人工智能的发展,如今的机器视觉系统更为高效、可及
斑马技术大中华区技术总监 程宁
一年一度的“双十一”购物节已于上月落下帷幕。据招商证券数据显示,今年“双十一”全网电商交易额达11507亿元,同比增长13.43%,呈现出较强的消费韧性。而相比往年,消费者在购物上则更为理性。有业内人士指出,如今品质消费、绿色消费、理性消费渐成主流,“双11”折射出国人消费理念的变化。
为跟上消费者日益增长的需求,以及对更高品质的追求,如今的制造领域需要在质量方面发力。消费者普遍在购买到破损产品或过期食物时,都会毫不犹豫地选择退货。据斑马技术《2022全球消费者调查》结果表明,消费者和零售商之间存在巨大的信任鸿沟。因此,维护消费者的信任尤为重要,而退货情况的发生就会损害品牌方或零售商的商誉。
许多公司日益依赖企业级计算机视觉和机器视觉解决方案,以应对这一挑战。据易观分析预测,随着工业与交通数字化转型的不断深入,以及前沿技术应用逐渐落地,中国计算机视觉市场规模增速将逐渐上升,预计2024年市场规模将达767亿元。这一数字并不意外,因为对于许多企业而言,大力采用人工智能(AI)和自动化是上佳之选,从而提升供应链速度,提高库存和订单的准确性,并完善品控。随着制造商和物流供应商竞相提高吞吐量,新一代机器视觉系统也在提供一种能在不影响准确性的情况下加快货物检验的简便方法,有望在相对严苛且劳动力有限的情况下加强履单能力。
机器视觉焕发新彩
机器视觉的一项基本功能是,通过使用从数字化图像中提取的信息与规则进行比较,来确定生产线上的零件或产品是否符合标准,并能够从生产线上自动移除未通过测试的物品。
考虑到零件或产品个体之间可能存在的细微变化,以及制造商和仓储经营者需加以注意的小规模缺陷,机器视觉系统成为在生产线上执行检验的优选工具也是有理可循的。它们能够比员工更快速地采集并分析图像。而且,随着分辨率的提高,在某些情况下远超人类的视觉范围,强大的机器视觉相机能够看到对于人眼来说太小或不可见的东西。
与此同时,它们还具备更完善的残像机制,这在监测缺陷模式和寻求解决方案时很有助益。关键人员能够看到上报的缺陷,确定来源,并迅速调查原因,以尽量减少进一步的浪费或导致履单延误。更重要的是,生产线上无需员工接触零件,这是机器视觉的一项关键优势,它能够防止潜在的损坏,省去人工检验的时间密集型流程,使员工能够完成更多具有战略意义的工作任务。